Back to search

Special Issue "Remote Sensing of Land Degradation in Drylands" (Remote Sensing –open access journal)

The papers present original research on land (soil and vegetation) degradation and desertification in drylands (and related subjects) using spectroscopy and remote sensing tools and techniques. 

Climatically speaking, drylands are areas where water losses (e.g., evapotranspiration) exceed water gains (e.g., rainfall). Others might be chosen, but the most commonly used aridity index, proposed by UNEP, is defined by the ratio between mean annual precipitation and mean annual potential evapotranspiration. Accordingly, UNEP defines drylands as areas with an aridity index of less than 0.65.

Drylands are subdivided into three zones: arid, semi-arid, and sub-humid, as the hyper-arid zone is excluded from this definition by UNCCD. Globally, drylands cover about 40% of the Earth’s land surface.

Remote sensing is a useful and powerful means for monitoring and exploring land surface changes and degradation and for producing dynamic information since satellites have the ability to cover vast and inaccessible areas and provides long-term repetitive data. Moreover, drylands have, most of the time, a relatively cloud-free sky and consequently the area is suitable for observation by all optical systems.

The forthcoming Special Issue on Remote Sensing of Land Degradation in Drylands calls for papers that present original research on land (soil and vegetation) degradation and desertification in drylands (and related subjects) using spectroscopy and remote sensing tools and techniques.